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Abstract-The violent oscillation of the bubble formed from the evaporated droplet at the superheat limit 
has been investigated analytically and numerically. In this study, we have formulated a general bubble 
dynamics model. which is suitable for the oscillating bubble in an incompressible liquid medium. One of 
distinct features of this model is that the velocity and temperature distribution of the gas inside the bubble 
are obtained by solving continuity and energy equations for the gas analytically. With uniform density and 
temperature distribution approximation, the calculated values of the far field pressure signal from the 
evolving bubble formed from the fully evaporated droplet are in good agreement with experimental results. 

1. INTRODUCTION 

It is well known that one may heat a liquid held at 
1 atm to a temperature far above its boiling point 
without the occurrence of boiling. The maximum tem- 
perature limit at which the liquid boils explosively is 
called the superheat limit of liquid. It has been verified 
experimentally that, when the temperature of a liquid 
droplet in an immiscible medium reaches its superheat 
limit at the ambient pressure of 1 atm, the droplet 
vaporizes explosively and becomes a bubble [ 11. Since 
the pressure inside the bubble formed from the fully 
evaporated droplet is greater than the ambient 
pressure in this case [2], the bubble expands rapidly 
so that it overshoots the mechanical equilibrium con- 
dition and its size oscillates. Even though such rapid 
evaporation of droplets at the superheat limit and 
subsequent violent bubble evolution phenomena have 
been investigated in the pioneering work of previous 
researchers [1, 31, many aspects of the phenomena 
are virtually unknown. The detailed nature of the 
evaporation process at this limit may lead to the 
understanding of ‘vapor explosion’, which poses a 
potential hazard in the transport of liquid gas and 
in the operation of liquid metal fast breeder reactors 
14, 51. 

Using the Rayleigh equation and the functional 
relationship between the pressure inside the bubble 
(Pb) and the bubble volume (V), P,V”’ = constant, 
which denotes the polytropic process, Kwak and Cho 
[6] calculate the far field pressure signal from the com- 
pact point source, i.e. the growing and collapsing bub- 
ble formed from the fully evaporated droplet at the 
superheat limit. The polytropic index n’ can range in 
the interval from 1 (isothermal) to the ratio of specific 
heats y (adiabatic). This polytropic approximation 
fails to account for the thermal damping effect on the 

far field signal because Pb d V is a perfect differential. 
On the other hand, Prosperetti et al. [7] solved the 
energy equation for the gas inside bubble numerically 
to obtain the instantaneous temperature distribution 
for the gas in their bubble dynamics study. However, 
it is hard to tell whether the evolution process of the 
bubble formed form the droplet at its superheat limit 
is isothermal or adiabatic. Furthermore, it has never 
been discussed for which case the non-uniform tem- 
perature approximation is appropriate, while the 
polytropic approximation intrinsically assumes uni- 
form density and temperature inside the bubble. 

The thermal damping mechanism due to finite heat 
transfer between a bubble and the surrounding liquid 
was first considered by Moody [8]. He realized that 
this damping is simply a consequence of the loss of 
availability during a process in which there is entropy 
production. With this concept, he explained the ring- 
out mechanism clearly [9]. 

In this study, we have formulated a general bubble 
dynamics model, which is suitable for the oscillating 
bubble in an incompressible liquid medium. The vel- 
ocity and temperature distribution of the gas inside 
the bubble was obtained by solving the continuity and 
energy equation for the gas with spatially uniform 
density analytically, which provides the temperature 
of the gas at the bubble wall and the heat flux inside 
the bubble. With this model, the polytropic approxi- 
mation is no longer required to calculate the internal 
pressure of the evolving bubble. From this for- 
mulation uniform and nonuniform temperature dis- 
tribution cases have been discussed. 

With uniform density and temperature distribution 
approximation, the violent oscillation of the bubble 
formed from the evaporated butane droplet at its 
superheat limit (105°C) in hot ethylene glycol has 
been investigated. Calculations show that the bubble 
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NOMENCLATURE 

c, sound speed in gas medium 41 normalized velocity constant 

CP heat capacity of vapor at constant u, gas velocity inside bubble 
pressure 4 radial velocity of liquid 

C p -c heat capacity of liquid V bubble volume 
C> heat capacity of vapor at constant V,” effective molecular volume of liquid 

volume Z coordination number. 
C, sound speed in liquid medium 

& average distance between molecules Greek symbols 

4, van der Waals diameter of molecules % thermal diffusivity of gas 
E internal energy co thermal diffusivity of liquid 
C internal energy per mass %I normalized thermal diffusivity 
E, free energy needed to form n-mer constant 

cluster 1 specific heat ratio of vapor 
/I enthalpy per mass 6 thermal boundary layer thickness 

k, conductivity of gas (vapor) V loss factor by thermal damping 

4 conductivity of liquid ‘1, loss factor by sound radiation 
li,, normalized constant of conductivity damping 

mh vapor mass inside bubble 80 potential parameter of London 
M number of molecules in a cluster dispersion attraction 
n’ polytropic index &I energy needed to separate a pair of 
N number density molecule 
P pressure PC critical density of liquid 
P pressure wave signal f’e density of gas inside bubble 

p, pressure of the evaporated molecules P”I density of metastable liquid phase 

P” gas pressure at bubble center PA density of ambient liquid 

; 

vapor pressure rtl relaxation time associated with 
amount of heat transfer rarefaction 

4 heat flux rd characteristic time of heat diffusion 
Y distance from the bubble center @‘, viscous dissipation rate per unit 

& radius of bubble volume 

Rd radius of droplet X dissipation coefficient of damping 

4 gas constant Q angular frequency of bubble 

rd distance between observer and bubble oscillation. 
center 

S entropy Subscripts 

S, entropy generation b bubble 
T temperature critical cluster 

Thl temperature at bubble-liquid interface E liquid 
T bO temperature at the bubble center non starting point of nonlinear growing of 

fo normalized time constant bubble 

ub bubble wall velocity IXI ambient liquid medium. 

evolution process is neither isothermal nor adiabatic, 
and that the thermal damping due to finite heat ex- 
change between vapor inside the bubble and the 
surrounding liquid plays a crucial role in bubble 
oscillation. Also the calculated values of the far field 
pressure signal from the evolving bubble are in good 
agreement with observed values. 

2. BASIC EQUATIONS FOR THE ANALYSIS OF 
NONLINEAR BUBBLE EVOLUTION 

(a) Model with thermal boundary layer 
Consider a vapor bubble formed from the fully 

evaporated butane droplet at its superheat limit. Fig- 

ure 1 shows the butane bubble of radius R,,(t) in hot 
thermally conducting and incompressible liquid 
(ethylene glycol) at temperature T, and distant 
pressure P, Mass transfer through the bubble inter- 
face is negligible because evaporation of host liquid 
molecules and condensation of butane molecules 
hardly occur. In fact, the temperature of the sur- 
rounding liquid (I 05 ‘C), which is the superheat limit 
of butane, is very high compared to the boiling point 
of butane (-0.5 C) and very low compared to the 
boiling point of glycerin (197°C). Only heat transfer 
due to the temperature difference between the vapor 
inside the bubble (T,,) and the surrounding liquid is 
considered in this analysis. 
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Fig. I. Physical model for spherical bubble oscillation in 
liquid medium. 

Heat transfer is assumed to occur through the thin 
boundary layer adjacent to the bubble wall. It is also 
assumed that the temperature profile in this layer is 
quadratic [lo] : 

T-T, 
___ = (1-r)’ 
TM - T, 

where 

r-R, 
‘=-. 

(1) 

The boundary layer thickness, 6 is, of course, a time- 
dependent quantity. Such a second-order curve satis- 
fies the following boundary conditions used in this 
model : 

and 

ZV,, 0 = TM T(R,, + 6, t) = T,, (2) 

PT (0 dr 
= 0. 

“=R,+6 

(b) Overall energy equation for bubble 
The overall energy conservation for bubble in liquid 

medium may be written as [9] 

(3) 

Assuming that the vapor contents of the bubble obey 
the ideal gas law, the internal energy of the vapor can 
be expressed as 

E = mbCL,bTb= y = y. 
“u’ - 1 

(4) 
g 

This equation implies that the gas is calorifically per- 
fect at equilibrium [l l] or the temperature of the gas 
is spatially uniform, in which the equation of state for 
an ideal gas, P, = psR,Tb, is valid. 

The heat transfer conducted through the boundary 
layer can be obtained by applying the Fourier law at 
the bubble wall, or 

Substituting equations (4) and (5) into equation (3), 
we have the time-dependent pressure inside the 
bubble, such as 

dpt, GYP, d& _=-___- 
dt Rh dt 

(c) Consertlation equations,for the gas inside the bubble 
If temperature distribution exists inside the bubble 

one cannot use the equilibrium relation, equation (4). 
In this section, conservation equations for gas inside 
the bubble are considered to obtain the gas pressure 
inside the bubble for the case where nonequilibrium 
phenomena exist. 

The continuity equation for the gas with spatially 
uniform density may be written as 

dP, DP, 
Dt -dr= -pBv*u, 

where the notation of the total derivative used here is 

With equation (7) and the mass conservation for 
the gas inside the bubble, D(p,V)/Dt = 0. which does 
not allow mass transfer, one may obtain the following 
radial-dependent gas velocity ug as 

& 
us = -r. 

Rb 

The gas density inside the bubble may be spatially 
uniform, provided that the period of bubble oscil- 
lation is much longer than the relaxation time which 
is required for the rarefaction due to bubble wall 
motion to propagate across the bubble, or r,, = Rb/CB 
[ 121. In fact, the relaxation time for the bubble in this 
study is about 10 ps, which is much less than the 
period of bubble oscillation (ms). 

The momentum equation for the gas inside the bub- 
ble can be written as follows, since the viscous force 
term vanishes with the velocity profile given in equa- 
tion (8) : 

p,!$ = -VP b. 

The velocity profile given in equation (8) provides the 
pressure for the gas inside the bubble. That is 

Pb = -gr'+P,,(f). 
b 

(10) 

The velocity and pressure profiles given in equations 
(8) and (10) also satisfy the kinetic energy equation 
for the gas. Since the first term of the RHS in equation 
(10) is negligible compared to P,(t), the pressure inside 
the bubble can be regarded as uniform spatially. This 
is permissible until the characteristic time of bubble 
oscillation is much less than the relaxation time of the 
translational motion of gas molecules, which is about 
10-‘-lO-‘” s, because the pressure is always related to 
the translational motion of molecules [ 1 I]. 
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Assuming that the internal energy and enthalpy 
for the gas inside the bubble are functions of the 
temperature of the gas, or de = C,,,dT and 
dh = C,,,dT, the energy equation for the gas can be 
written as [ 131 

p,g = P,C”.b!$ = -P,V*u,-V*q+@,. (1 I) 

Using the definition of enthalpy, the energy equa- 
tion becomes 

p,E = y,c,,b~ = yf -V*q+@,. (12) 

Eliminating DT,/Dr from equations (11) and (12), 
one may obtain the following equation : 

dP, _ = --yP,v~u,-(~-l)v~q+(y-l)@,. (13) 
dt 

Without the viscous dissipation term, this equation is 
the same one as equation (6), providing that 

v*q= 6k,(7-b, - Tz) 
= - 6R b (a-1) 

(14) 

Certainly this equation holds at the bubble wall as 
well as inside the bubble. With the velocity profile 
given in equation (8) and this heat flow rate per unit 
volume, the pressure inside the bubble is dependent 
on time only, as verified in equation (IO). 

(d) Temperature distribution jbr gas inside the bubble 
The temperature distribution of the gas inside the 

bubble may be obtained by using the Fourier law and 
equation (14) by assuming that the conductivity for 
gas is constant. That is 

7 

Tb= ‘& dPh ‘h 
6(y - l)k, 

dt +3%; + T,,<,(t). (15) 
b I 

The above equation can be written, with the help of 
equation (14). as follows : 

+TT, (16) 

which shows that the temperature distribution of the 
gas inside the bubble is also quadratic w.r.t. r. The 
temperature at the bubble wall can be obtained easily 
from equation (14) or equation (16). 

(17) 

This relation shows how the bubble wall temperature 
is related to the temperature at the bubble center and 

the ambient temperature. Assigning an arbitrary value 
T,, with a boundary condition is not permitted. 

(e) Unifbrm und nonumfbrm temperature di,stribution 
Using the property relation, Tds = dr+ Pd( I/p) 

and equation (1 I), the rate change of entropy for gas 
particles inside the bubble is given by 

If the characteristic time of the bubble evolution is 
long compared to the relaxation time r,,. the viscous 
dissipation in equation (18) may be negligible [ 121. 
Further, if there is no heat transport at the bubble 
wall (adiabatic wall). one may obtain the well-known 
relation P,,V. = constant, which guarantees uniform 
temperature distribution inside the bubble as verified 
in equation (15). 

The uniform temperature distribution also occurs 
when there is no heat flux or q = 0 inside the bubble. 
This can be achieved when the bubble oscillating per- 
iod is much shorter than the characteristic time of 
heat diffusion, td = R$Q so that the gas distribution 
function depends only on the peculiar or thermal vel- 
ocity (thermal equilibrium case). In this limit. we may 
obtain the gas temperature inside the bubble by taking 
the value of the gas conductivity as infinity in equation 
(17). That is T, = T,, = T,,“(t), which validates the 
bubble dynamics formulation with the assumption of 
uniform gas temperature inside the bubble [ 141. Heat 
transfer through the thermal boundary layer adjacent 
to the bubble wall only determines the heat exchange 
between bubble and medium in this case. 

However, the temperature gradient inside bubble 
should exist. provided that thermal equilibrium does 
not follow mechanical equilibrium. This situation is 
realizable when the characteristic time of bubble evol- 
ution is much shorter than the relaxation time of 
vibrational motion, which is of the order of 10dh s for 
high gas temperature. If a temperature gradient exists 
inside the bubble, the heat transfer through the bubble 
wall depends on the properties of the bubble and the 
thermal boundary layer medium. In this case, one 
may rewrite equation (5), the heat exchange between 
bubble and medium. with the help of equation (17). 
That is 

87iR;kJ T,,,) - T, ) 

(5’) 

As long as the value of (k$)/(k,R,,) is finite, there 
exists a temperature distribution inside the bubble 
(nonuniform temperature limit). For a very small 
value of (k&)/(k,R,,), the heat flow rate from the 
bubble is solely determined from the temperature 
gradient of the gas inside the bubble [7]. Or 
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(f) Properties at the bubble center 
Now the only parameter undetermined is the bubble 

center temperature TbO. At the bubble center, where 
the state equation for an ideal gas, P, = pORgTb,,, 
holds, the energy equation without viscous dissi- 
pation, equation (12). becomes, with the help of equa- 
tion (14) 

d Th,, 1’ dP, 3YP, A, 
P”C,.hT = ~ _ + 7 F. 7-l dt 

(20) 
i b 

After rearranging the above equation with the ideal 
gas law, we have 

q”(F)} ̂  
dt =” 

01 

PbR; 
7 = constant (21) 

which is another representation of the ideal gas 
relation. The time dependence of the temperature of 
the gas at the bubble center is readily obtained from 
equations (21) and (6) or (I 3) : 

d The 3(y- l)T,,, dR, 6(~-I)k,Th,(Th,-7-,) ~- _~_~_ 
dr R,, dt 6R,P, 

(22) 

Now, all the gas properties at the bubble center can 
be calculated by using equations (13), (21) and (22). 
The above relations, equations (21) and (22), are valid 
for the whole region inside the bubble, provided that 
the temperature of gas is spatially uniform, as dis- 
cussed in Section 2(b). 

Note that the material derivative of temperature 
inside the bubble is invariant for spatially uniform 
density, or DT,/Dt = DT,,,/Dt. 

(g) Bubble dynamics 
Compared to the vapor, the liquid is virtually 

incompressible because the bubble wall velocity con- 
cerned in this analysis is much smaller than the sound 
speed of liquid. With this assumption, the con- 
servation of mass and momentum for the liquid results 
in the well-known Rayleigh equation governing the 
radial motion of a spherical bubble in an unbounded 
liquid [ 151. That is 

R,%+;u; =;l;(P,P=). (23) 

Effects of surface tension and viscosity on the momen- 
tum equation have been neglected. This assumption 
is valid for the mm-size bubble considered in this 
analysis. Indeed, the pressure terms due to surface 
tension and viscosity in equation (23) are very much 

less than the internal pressure of the bubble, P,, for 
such bubble dimensions. 

The bubble wall velocity, ubr is the time derivative 
of the bubble radius : 

d& 
dt= uh. 

(h) Liquid energy equation 
The energy conservation equation for liquid under 

the influence of bubble wall motion is expressed by 

where a, = k,lp,C,,, is the thermal diffusivity, and 
the radial velocity of liquid due to bubble motion can 
be obtained from mass conservation for an incom- 
pressible liquid, V * II, = 0. That is 

Integrating equation (25) from r = Rhr to 
r = R, + S, yields 

s R,+b ZT 
r2 zdr+ s &+A 

u r2 cTdr 
4 4 ’ Pr 

s 

Rh+h 

= 3, ------dr. (26) 
4 r7r 

With the temperature profile and boundary conditions 
given in equations (1) and (2), and the velocity profile 
in the liquid, the above equation becomes [ 161 

(27) 

Such an ordinary differential equation obtained from 
the integral one is very useful to compute the chaotic 
behavior of bubble [16] and sonoluminescence 
phenomena [I 71, which need enormous computing 
time. 

Now we have six equations, (6) or (13). (17), (22).- 
(24) and (27) to solve six unknowns, Ph. T,,,. Thll. uh, 
Rb and 6. 

(i) Bubble pressurejeld and sound transimission 
During the nonlinear evolution, the bubble emits a 

pressure wave. The far field pressure signal from this 
evolving bubble at distance rd from the bubble center 
can be written in terms of the volume acceleration ot 
the bubble, v, where P = 47cRi d, [ 181: 

. . 

f’:,,(t) = $$= 2 (2R& + R;&). (28) 
d 
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The damping mechanism of the pressure wave due to posed by Kwak and Panton [20]. A crucial assumption 
bubble pulsation in this case is mainly due to sound of this modified bubble nucleation model based on 
radiation and heat transfer between vapor in the bub- molecular interaction is that the bubble formation 
ble and the surrounding liquid, because damping due process is initiated by the birth of a critical molecular 
to viscous losses in the liquid is negligible. cluster [2] rather than a critical bubble [4]. 

If the bubble dimension is much less than the 
characteristic wavelength of bubble oscillation, the 
loss factor qs due to sound radiation by the compact 
point source is given by [ 181 

A stability condition for a cluster and the cor- 
responding minimum free energy for the cluster can 
be obtained by assuming that the liquid has a face- 
centered cubic (FCC) lattice structure and that the 
London dispersion force is the only important inter- 
action between molecules in their metastable state 
[20]. These are 

1 

I J 

3YP, 
“,=C ~ PI 

(29) 

Then the resultant expression for the acoustic pressure 
from bubble pulsation becomes approximately 

PAon = $(2R,,Ri+Ri$)exp (30) 

(j) Bubble entropy production 
Using the thermal boundary layer with constant 

thickness at the bubble-liquid interface, the thermal 
damping due to finite heat exchange with the sur- 
rounding liquid was first treated by Moody [8]. Even 
though the damped bubble oscillation closely 
resembles damping of a mechanical system by friction, 
neither frictional dissipation nor energy lost in such a 
bubble-liquid system is present. The damped bubble 
oscillation due to finite heat transfer through the bub- 
ble wall simply displays an available power loss where 
there is entropy production. The entropy generation 
rate in such an oscillating bubble-liquid system is the 
combination of the rate change of entropy for vapor 
inside the bubble due to bubble pulsation and the net 
entropy flow out of the bubble as the result of heat 
exchange [19]. That is, 

(31) 

Rewriting the above equation for the uniform tem- 
perature case, we have 

which guarantees that the entropy generation is 
always positive. 

3. INITIAL CONDITIONS FOR THE EVOLVING 

BUBBLE FORMED FROM THE DROPLET AT 
THE SUPERHEAT LIMIT 

A fully evaporated droplet which maintains its satu- 
rated liquid volume may be considered as an assem- 
blage of a tremendous number of critical clusters. The 
internal pressure of the agglomeration of the critical 
cluster or the fully evaporated droplet may be 
obtained from the vapor bubble formation model pro- 

x,,, 
- (Px -P&z: 1 = T/V”, (33-l) 

ZC,,, 
F,,‘=+, =i(P,.-P,)V,,,n,. (33-2) 

If any cluster, an aggregate of the activated molecules 
in the metastable state, meets the condition (33-l), the 
liquid molecules in the cluster vaporize spontaneously 
by breaking the interaction between molecules. Thus, 
equation (33-l) can be regarded as the equation of 
vapor state of the critical cluster. The evaporated 
state, retaining the molecular volume of the saturated 
liquid state, V,, is characterized by its very high 
pressure, P,, : 

p,, = -(P, -P,)ni” = +f”,. (33-l’) 

For example, the value of P,, is about 138 bar for 
butane at its supherheat limit. In the above equations. 
a,, is the energy required to separate a pair of molecules 
from the given liquid state to the critical state. This is 
given approximately by [20] 

The average distance between molecules dn, in equa- 
tion (34) and the effective molecular volume I’,, in 
equation (33) can be found from the number density 
of liquid. N. The relation is 

;d;,N = V,N = 0.7405 (35) 

where 0.7405 is the packing fraction of the FCC lattice 
structure. Certainly the equation of state for the vapor 
from the fully evaporated droplet, which is given in 
equation (33-l’), is not the one for an ideal gas. 

Since the internal pressure of the fully evaporated 
droplet is very large, as noted before, it is expected 
that the droplet expands spontaneously. At the initial 
stage of this process, the bubble expands linearly with 
time. However its linear growing fashion slows down 
near the point where the nonlinear growing starts [I]. 
At the starting point of nonlinear growing, the bubble 
wall velocity vanishes. Thus, it is reasonable to choose 
this time as the starting point for calculation of non- 
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linear bubble evolution. The pressure wave signal 
from the bubble at this point is given by 

Ph”” = % [PIAR”,“) -PA. (36) 

The pressure inside the bubble at this time may be 
expressed by the droplet radius, Rd, and its internal 
pressure, P,. Then equation (36) may be written as 

P;<,” = $f(+&P’]. (36’) 

The far field pressure signal at this point is strongly 
dependent on the droplet volume, R,j, and its internal 
pressure of evaporated state, P,. If one knows the 
magnitude of the far field pressure signal, P’,,,. and 
the droplet radius, R,,, one can estimate the radius of 
the bubble and the pressure inside the bubble at this 
point, which may be used as initial conditions for 
studying subsequent nonlinear bubble evolution. The 
other possibility is that one may calculate the pressure 
inside the bubble if the values of far field pressure 
and the bubble radius at this point are provided. The 
temperature at the starting point of nonlinear growing 
was taken as just the superheat limit of liquid. In 
this study, we used the available experimental data 
obtained by Shepherd and Sturtevant [l] and Frost 
[21] to estimate the initial conditions needed for 
numerical calculations. 

4. NUMERICAL CALCULATIONS 

In numerical analysis, a normalization of the gov- 
erning equations was carried out as follows. The 
radius and the boundary layer thickness are compared 
to the initial radius R,,,, the temperature is related 
to the ambient temperature T, and the velocity and 
pressure are related to constants, namely 
u,, = (Pm/p,,)“* and P,., respectively. For the other 
physical quantities such as time, thermal conductivity 
and thermal diffusivity, the normalization constants 
are obtained from the condition 
equations are invariant after the 
cedure, which are given as : 

time 

that the governing 
normalization pro- 

R to = 0” 
&I 

thermal conductivity 

k, = 
Pa. uo &on 

7-f. 
thermal diffusivity 

~0 = Vernon. 

Using these normalized parameters, we may obtain 
the following nondimensional governing equations : 

du 1 
- = x (p- l-$2) 
dt 

dR 

dt=U 
(24’) 

dP 
-= 
dt 

_ !Xp,- ICY- W;T,,- 1) (6,1 or (13,J 

(17’) 

dTbo 3(~-l)T,,u 6(?-l)k,Ts,(Ts,-1) __=_ 
dt R - 6RP 

(22’) 

dd 1 
%-2flu(1+0.25fl) 

dt = (1+~+0.3/?‘) 6 [ 

-S(l +o.slr+o.llr’)& 
1 

(27’) 
hl 

and 

where 

dTt,, -= 
dt 

With known values of P, Tbo, Tbl and R, which are 
state variables of the vapor inside the bubble at the 
starting point of nonlinear bubble evolution, initial 
bubble wall velocity and approximate value of 6. we 
solved the foregoing six equations by using the 
Runge-Kutta numerical method to obtain the next 
time step values of u, R, P, TM, Tbl and 6. This cal- 
culation was repeated up to the desired time step. In 
this calculation, we let dd/dt = 0 to avoid an infinite 
value of the boundary layer thickness, provided that 
the absolute value of (T,,- 1) is less than 0.0005, 
which corresponds to ITb,-- T,,( < 0.2l”C. The uni- 
form temperature distribution case can be obtained 
by replacing T,,, with The. 

5. CALCULATION RESULTS AND DISCUSSIONS 

Bubble dynamics formulated in this study contain 
a general thermal behavior for the gas inside the bub- 
ble in oscillation. For numerical calculations, we used 
the ‘uniform temperature limit’, which is appropriate 
for the bubble evolution investigated in this study, 
since the temperature of the vapor inside the bubble 
is so low that vibrational motion of the vapor mol- 
ecules is not excited and the characteristic time of 
bubble evolution (ms) is much longer than the relax- 
ation time of translational motion of vapor molecules. 

The calculated pressure wave signal from the evolv- 
ing butane bubble in ethylene glycol at the ambient 
pressure of 1 ,013 bar and at a temperature of 378 K is 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Time ( msec ) 

Fig. 2. Pressure wave signal from the oscillating butane bub- 
ble in ethylene glycol at 1.013 bar. The initial conditions are 

R, = 1.37 mm, P, = 6.67 bar, T,, = 378 K. 

shown in Fig. 2, together with observed data [I]. The 
radius of the bubble and the pressure inside the bubble 
at the starting point of the calculation are 1.37 mm 
and 6.67 bar, respectively. Using these values, which 
were chosen to produce the same value of observed 
pressure wave signal at the starting point, the droplet 
radius estimated from equation (34) is about 0.50 mm. 
The agreement between calculation and observation 
is exceptionally good, which supports the validity of 
the bubble dynamics model presented in this paper. 

The calculated value of the loss factor due to ther- 
mal and sound radiation damping combined is about 
0.053, while the loss factor due to sound radiation is 
only 0.011. So the thermal damping turns out to be 
the more important factor for controling the oscil- 
lation for such a size of bubble. The loss factor due to 
thermal and sound radiation damping may be 
obtained from the relation to the dissipation 
coefficient, x, by q = 2x/w [18]. The loss factor was 
calculated from the following relation : 

x = In (P; /P9/2n/w (37) 

where P’, and Pi are the peak values in the far field 
pressure signal observed during one oscillation period. 
The theoretical radius-time curve, along with the 
approximate bubble diameters at several points, 
which was measured from the different sequences of 
similar bubbles [I], is also shown in Fig. 3. A reason- 
able agreement between calculated values and 
observed ones can also seen in this figure. 

Figure 4 shows the time rate change of gas tem- 
perature during bubble evolution with the same initial 
conditions as used in Fig. 2. As expected, the process 
of bubble evolution is neither isothermal nor adia- 
batic. As can be seen in Fig. 4, the lowest temperature 
experienced by the vapor during bubble oscillation is 
about 86”C, which eliminates the possibility of con- 
densation of vapor inside the bubble, as assumed. As 
shown in Fig. 5, the entropy generation during this 
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Fig. 3. Radius-time curve for the butane bubble with same 
initial conditions as used Fig. 2. The solid circles represent 
the values observed from the different sequences of similar 

bubbles. 
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Fig. 6. Time dependence of the temperature at the bubble 
center (-) and the average temperature (.‘.) of the oscil- 

lating butane bubble with nonuniform temperature limit. 

bubble oscillation turns out to be always positive, as 
expected. 

For the case that the temperature of the gas inside 
the bubble is nonuniform (nonuniform temperature 
limit), the bubble has a drastically different tem- 
perature excursion from the one obtained from the 
uniform temperature limit, as shown in Fig. 6. The 
change of gas temperature at the bubble center 
behaves almost adiabatically. In this case, the loss 
factor due to thermal and sound radiation damping is 
about 0.013, which shows that thermal damping effect 
on bubble oscillation is negligible. This is because the 
temperature difference between the bubble wall and 
the liquid medium is small. Consequently less heat 
exchange between the bubble and liquid occurs. 

Another calculated pressure trace obtained from 
the oscillating ether bubble in glycerin at 3 bar with 
uniform temperature assumption is shown in Fig. 7. 
The initial conditions used were 2.45 mm for bubble 
radius and 5.2 bar for the corresponding bubble 
pressure. The bubble oscillation pattern, determined 
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Fig. 7. Calculated pressure wave signal from the oscillating 
ether bubble in glycerin at 3 bar with initial conditions, 

Rb = 2.45 mm, Pb = 5.2 bar, T,, = 420.0 K (rd = 6 mm). 

from the bubble’s maximum radius and difference in 
pressure between the vapor in the bubble and the 
ambient liquid [22], is quite different from the case of 
ambient pressure of 1 bar. The oscillating behavior at 
3 bar is similar to the typical simple harmonic motion 
with damping rather than impulsive oscillation with 
greater amplitude, which occurs in the case of 1 bar. 
The calculated loss factor during the second period is 
about 0.04, which is much smaller than the exper- 
imental observation, 0.135 [21]. However this figure 
clearly shows the thermal damping effect on bubble 
oscillation. An adiabatic and isothermal bubble yields 
undamped bubble oscillation [9]. A high value of the 
loss factor observed [21] may be due to catastrophic 
deformation of the bubble surface, which enhances 
the heat transfer area. In this case, the calculated 
oscillation period of 0.64 ms is in good agreement with 
the observed value of 0.67 ms. This may be due to the 
fact that the pressure oscillation frequency remains 
constant even after the bubble break-up [21]. The 
value of the specific heat ratio used for ether was 
calculated from the specific heat data in Weast [23]. 

At high ambient pressure, the pressure diflerence 
between the vapor inside the bubble and the ambient 
liquid, which may be considered as the driving force 
for nonlinear bubble growth, decreases substantially. 
With a small driving force, impulsive growth does not 
happen and the bubble growth is followed by a slight 
oscillating motion, approaching mechanical equi- 
librium. For high ambient pressure, the driving force 
virtually vanishes, which guarantees equilibrium 
phase transition [24]. 

With the bubble dynamics model with nonuniform 
temperature distribution, which is valid for the case 
where the bubble compression time is much shortei 
than the relaxation time of vibrational motion of mol- 
ecules, one may predict the chaotic behavior of the 
bubble under an ultrasonic field [16] and sono- 
luminescence phenomena from the oscillating bubble 
in the ultrasonic field [ 171. 

6. CONCLUSIONS 

A general model for bubble dynamics has been for- 
mulated and applied to study the nonlinear evolution 
of vapor bubble formed from the evaporated droplet 
at the superheat limit. A distinct feature of this model 
is that the velocity and temperature profiles for the 
gas inside the bubble have been obtained analytically. 
With this model, the polytropic approximation is no 
longer required to calculate the internal pressure of 
the evolving bubble. With uniform density and tem- 
perature approximation, it has been found that the 
thermal damping due to finite heat exchange between 
vapor inside the bubble and the surrounding liquid 
plays a crucial role in the oscillation of the bubble, and 
that the bubble evolution process is neither isothermal 
nor adiabatic. Also the calculated values of the far 
field pressure signal from the evolving bubble are in 
good agreement with experimental results. 
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